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5 Angle Modulation: FM and PM

5.1. We mentioned in 4.2 that a sinusoidal carrier signal

A cos(2πfct+ φ)

has three basic parameters: amplitude, frequency, and phase. Varying these
parameters in proportion to the baseband signal results in amplitude mod-
ulation (AM), frequency modulation (FM), and phase modulation (PM),
respectively.

5.2. As in 4.62, we will again assume that the baseband signal m(t) is

(a) band-limited to B; that is, |M(f)| = 0 for |f | > B

and

(b) bounded between −mp and mp; that is, |m(t)| ≤ mp.

Definition 5.3. Phase modulation (PM ):

xPM (t) = A cos (2πfct+ φ+ kpm (t))

• max phase deviation:
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Definition 5.4. The main characteristic22 of frequency modulation (FM)
is that the carrier frequency f(t) would be varied with time so that

f(t) = fc + kfm(t), (72)

where kf is an arbitrary constant.

• The subscript “f” in kf is there to distinguish the constant from a
similar constant in PM.

• f(t) is varied from fc − kfmp to fc + kfmp.

• fc is assumed to be large enough such that f(t) ≥ 0.

Example 5.5. Figure 33 illustrates the outputs of PM and FM modulators
when the message is a unit-step function.158 Chapter 4 ∙ Angle Modulation and Multiplexing
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Comparison of PM and FM modulator
outputs for a unit-step input.
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where Re(⋅) implies that the real part of the argument is to be taken. Expanding $%&(') in a
power series yields

()(') = Re
{
*)

[
1 + %&(') − &2(')

2! −⋯
]
$%2#+)'

}
(4.11)

If the peak phase deviation is small, so that the maximum value of |&(')| is much less than
unity, the modulated carrier can be approximated as

()(') ≅ Re[*)$%2#+)' + *)&(')%$%2#+)']

Taking the real part yields

()(') ≅ *) cos(2#+)') − *)&(') sin(2#+)') (4.12)

The form of (4.12) is reminiscent of AM. The modulator output contains a carrier com-
ponent and a term in which a function of ,(') multiplies a 90◦ phase-shifted carrier. The
first term yields a carrier component. The second term generates a pair of sidebands. Thus,
if &(') has a bandwidth - , the bandwidth of a narrowband angle modulator output is 2- .
The important difference between AM and angle modulation is that the sidebands are pro-
duced by multiplication of the message-bearing signal, & ('), with a carrier that is in phase

Figure 33: Comparison of PM and FM
modulator outputs for a unit-step input.
(a) Message signal. (b) Unmodulated
carrier. (c) Phase modulator output (d)
Frequency modulator output. [15, Fig
4.1 p 158]

22Treat this as a practical definition. The more rigorous definition will be provided in 5.15.
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• For the PM modulator output,

◦ the (instantaneous) frequency is fc for both t < t0 and t > t0

◦ the phase of the unmodulated carrier is advanced by kp = π
2 radians

for t > t0 giving rise to a signal that is discontinuous at t = t0.

• For the FM modulator output,

◦ the frequency is fx for t < t0, and the frequency is fc+fd for t > t0

◦ the phase is, however, continuous at t = t0.

Example 5.6. With a sinusoidal message signal in Figure 34a, the frequency
deviation of the FM modulator output in Figure 34d is proportional to
m(t). Thus, the (instantaneous) frequency of the FM modulator output is
maximum when m(t) is maximum and minimum when m(t) is minimum.

4.1 Phase and Frequency Modulation Defined 159

(a)

(b)

(c)

(d)

Figure 4.2
Angle modulation with sinusoidal messsage signal. (a) Message signal. (b) Unmodulated carrier. (c)
Output of phase modulator with !("). (d) Output of frequency modulator with !(").

quadrature with the carrier component, whereas for AM they are not. This will be illustrated in
Example 4.1.

The generation of narrowband angle modulation is easily accomplished using the method
shown in Figure 4.3. The switch allows for the generation of either narrowband FM or narrow-
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Carrier
oscillator

90° phase
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Figure 4.3
Generation of narrowband angle modulation.

Figure 34: Different modulations of sinu-
soidal message signal. (a) Message signal. (b)
Unmodulated carrier. (c) Output of phase
modulator (d) Output of frequency modula-
tor [15, Fig 4.2 p 159 ]

The phase deviation of the PM output is proportional to m(t). However,
because the phase is varied continuously, it is not straightforward (yet) to
see how Figure 34c is related to m(t). In Figure 38, we will come back to
this example and re-analyze the PM output.
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AM

FM

PM

Modulating
signal

Figure 5.1–2 Illustrative AM, FM, and PM waveforms.

212 CHAPTER 5 • Angle CW Modulation

carrier amplitude, we modulate the frequency by swinging it over a range of, say,
�50 Hz, then the transmission bandwidth will be 100 Hz regardless of the message
bandwidth. As we’ll soon see, this argument has a serious flaw, for it ignores the dis-
tinction between instantaneous and spectral frequency. Carson (1922) recognized
the fallacy of the bandwidth-reduction notion and cleared the air on that score.
Unfortunately, he and many others also felt that exponential modulation had no
advantages over linear modulation with respect to noise. It took some time to over-
come this belief but, thanks to Armstrong (1936), the merits of exponential modula-
tion were finally appreciated. Before we can understand them quantitatively, we
must address the problem of spectral analysis.

Suppose FM had been defined in direct analogy to AM by writing xc(t) � Ac cos vc(t) t
with vc(t) � vc[1 � mx(t)]. Demonstrate the physical impossibility of this definition by
finding f(t) when x(t) � cos vmt.

Narrowband PM and FM
Our spectral analysis of exponential modulation starts with the quadrature-carrier
version of Eq. (1), namely

(9)

where

(10)xci1t 2 � Ac cos f1t 2 � Ac c1 �
1

2!
 f21t 2 � p d

xc1t 2 � xci1t 2  cos vct � xcq1t 2  sin vct

EXERCISE 5.1–1

car80407_ch05_207-256.qxd  12/8/08  10:49 PM  Page 212

Confirming Pages

Figure 35: Illustrative AM, FM, and PM waveforms. [3, Fig 5.1-2 p 212]

Example 5.7. Figure 35 illustrates the outputs of AM, FM, and PM mod-
ulators when the message is a triangular (ramp) pulse.

AM

PM

Sudden drop in the value of 

Sudden change in the phase

In this region,  is increasing

Higher but constant frequency.

cos 2

cos 2

> 0

cos 2 2  

,

Figure 36: Explaining
PM waveform in Figure
35.

To understand more about FM, we will first need to know what it actually
means to vary the frequency of a sinusoid.
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ECS 332: Additional Example 

1. A PM signal is created from the message ( )m t  by ( ) ( )( )PM 2cos 2 c px t f t k m t= + . 

Suppose 1cf =  and 90
2

pk


= = . For the message ( )m t  plotted blow. Plot the corresponding ( )PMx t . 
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5.1 Instantaneous Frequency

Definition 5.8. The generalized sinusoidal signal is a signal of the form

x(t) = A cos (θ(t)) (73)

where θ(t) is called the generalized angle.

• The generalized angle for conventional sinusoid is θ(t) = 2πfct+ φ.

• In [3, p 208], θ(t) of the form 2πfct + φ(t) is called the total instan-
taneous angle.

Definition 5.9. If θ(t) in (73) contains the message information m(t), we
have a process that may be termed angle modulation.

• The amplitude of an angle-modulated wave is constant.

• Another name for this process is exponential modulation.

◦ The motivation for this name is clear when we write x(t) asARe
{
ejθ(t)

}
.

◦ It also emphasizes the nonlinear relationship between x(t) and
m(t).

• Since exponential modulation is a nonlinear process, the modulated
wave x(t) does not resemble the message waveform m(t).

5.10. Suppose we want the frequency fc of a carrier A cos(2πfct) to vary
with time as in (72). It is tempting to consider the signal

A cos(2πg(t)t), (74)

where g(t) is the desired frequency at time t.

Example 5.11. Consider the generalized sinusoid signal of the form 74
above with g(t) = t2. We want to find its frequency at t = 2.

(a) Suppose we guess that its frequency at time t should be g(t). Then,
at time t = 2, its frequency should be t2 = 4. However, when com-
pared with cos (2π(4)t) in Figure 37a, around t = 2, the “frequency”
of cos(2π

(
t2
)
t) is quite different from the 4-Hz cosine approximation.

Therefore, 4 Hz is too low to be the frequency of cos(2π
(
t2
)
t) around

t = 2.

96



1

(a) (b)

Figure 37: Approximating the frequency of cos(2π (t2) t) by (a) cos (2π(4)t) and (b)
cos (2π(12)t).

(b) Alternatively, around t = 2, Figure 37b shows that cos (2π(12)t) seems
to provide a good approximation. So, 12 Hz would be a better answer.

Definition 5.12. For generalized sinusoid A cos(θ(t)), the instantaneous
frequency 23 at time t is given by

f(t) =
1

2π

d

dt
θ(t). (75)

Example 5.13. For the signal cos(2π
(
t2
)
t) in Example 5.11,

θ (t) = 2π
(
t2
)
t

and the instantaneous frequency is

f (t) =
1

2π

d

dt
θ (t) =

1

2π

d

dt

(
2π
(
t2
)
t
)

= 3t2.

In particular, f (2) = 3× 22 = 12.

5.14. The instantaneous frequency formula (75) implies

θ(t) = 2π

∫ t

−∞
f(τ)dτ = θ(t0) + 2π

∫ t

t0

f(τ)dτ. (76)

23Although f(t) is measured in hertz, it should not be equated with spectral frequency. Spectral frequency
f is the independent variable of the frequency domain, whereas instantaneous frequency f(t) is a time-
dependent property of waveforms with exponential modulation.
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5.2 FM and PM

Definition 5.15. Frequency modulation (FM ):

xFM (t) = A cos

2πfct+ φ+ 2πkf

t∫
−∞

m (τ)dτ

 . (77)

Its instantaneous frequency is

f (t) = fc + kfm (t) .

5.16. Phase modulation (PM ): The phase-modulated signal is defined
in Definition 5.3 to be

xPM (t) = A cos (2πfct+ φ+ kpm (t))

When m(t) is differentiable, the instantaneous frequency of xPM(t) is

(78)

Therefore, the instantaneous frequency of the PM signal varies in pro-
portion to the slope of m(t).

1

cos 2

PM

FM

Figure 38: A revisit of
the PM signal in Figure
34.
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In particular, the instantaneous frequency of the PM signal is maximum
when the slope of m(t) is maximum and minimum when the slope of m(t)
is minimum.

Example 5.17. Sketch FM and PM waves for the modulating signal m(t)
shown in Figure 39a.

1

 FMx t  PMx t

Figure 39: FM and PM waveforms generated from the same message.

5.18. The “indirect” method of sketching xPM(t) (using ṁ(t) to frequency-
modulate a carrier) works as long as m(t) is a continuous signal. If m(t)
is discontinuous, this indirect method fails at points of discontinuities. In
such a case, a direct approach should be used to specify the sudden phase
changes. This is illustrated in Example 5.20.

5.19. Summary: To sketch xPM(t) from m(t),

(a) in the region where m(t) is differentiable, vary the the instantaneous
frequency of xPM(t) in proportion to the slope of m(t)

(b) at the location where m(t) is discontinuous (has a jump), calculate the
amount of phase shift from the jump amount:

∆θ = θ(t+0 )− θ(t−0 ) = kp
(
m(t+0 )−m(t−0 )

)
= kp∆m.
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Example 5.20. Sketch FM and PM waves for the modulating signal m(t)
shown in Figure 40a.

1

 FMx t  PMx t

Figure 40: FM and PM waveforms generated from the same message.

5.21. Generalized angle modulation (or exponential modulation):

x(t) = A cos (2πfct+ φ+ (m ∗ h)(t))

where h is causal.

(a) Frequency modulation (FM ): h(t) = 2πkf1[t ≥ 0]

(b) Phase modulation (PM ): h(t) = kpδ(t).
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5.22. Relationship between FM and PM:

• Equation (77) implies that one can produce frequency-modulated signal
from a phase modulator.

• Equation (78) implies that one can produce phase-modulated signal
from a frequency modulator.

• The two observations above are summarized in Figure 41.

 

( )FMx t  ( )m t  

 

( )
t

m dτ τ
−∞
∫  

Phase 
Modulator ∫  

Frequency modulator 

( )PMx t  ( )m t  

 

( )m t′  Frequency 
Modulator 

 d
dt

 

Phase modulator 

Figure 41: With the help
of integrating and dif-
ferentiating networks, a
phase modulator can pro-
duce frequency modula-
tion and vice versa [5, Fig
5.2 p 255].

• By looking at an angle-modulated signal x(t), there is no way of telling
whether it is FM or PM.

◦ Compare Figure 34c and 34d in Example 5.6.

◦ In fact, it is meaning less to ask an angle-modulated wave whether
it is FM or PM. It is analogous to asking a married man with
children whether he is a father or a son. [6, p 255]
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5.23. So far, we have spoken rather loosely of amplitude and phase modula-
tion. If we modulate two real signals a(t) and φ(t) onto a cosine to produce
the real signal x(t) = a(t) cos(ωct + φ(t)), then this language seems unam-
biguous: we would say the respective signals amplitude- and phase-modulate
the cosine. But is it really unambiguous?

The following example suggests that the question deserves thought.

Example 5.24. [9, p 15] Let’s look at a “purely amplitude-modulated”
signal

x1(t) = a(t) cos(ωct).

Assuming that a(t) is bounded such that 0 ≤ a(t) ≤ A, there is a well-
defined function

θ(t) = cos−1

(
1

A
x1(t)

)
− ωct.

Observe that the signal

x2(t) = A cos (ωct+ θ(t))

is exactly the same as x1(t) but x2(t) looks like a “purely phase-modulated”
signal.

5.25. Example 5.24 shows that, for a given real signal x(t), the factorization
x(t) = a(t) cos(ωct+φ(t)) is not unique. In fact, there is an infinite number
of ways for x(t) to be factored into “amplitude” and “phase”.
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5.3 Bandwidth of FM Signals

5.26. FM: The “Holy Grail” Technique for BW Saving?
In the 1920s, the idea of frequency modulation (FM) was naively proposed

very early as a method to conserve the radio spectrum. The argument was
presented as follows:

• If m(t) is bounded between −mp and mp, then the maximum and mini-
mum values of the (instantaneous) carrier frequency would be fc+kfmp

and fc − kfmp, respectively. (Think of this as a delta function shifting
to various location between fc + kfmp and fc − kfmp in the frequency
domain.)

• Hence, the spectral components would remain within this band with a
bandwidth 2kfmp centered at fc.

• Conclusion: By using an arbitrarily small kf , we could make the infor-
mation bandwidth arbitrarily small (much smaller than the bandwidth
of m(t).

In 1922, Carson argued that this is an ill-considered plan. We will illustrate
his reasoning later. In fact, experimental results shows that

As a result of his observation, FM temporarily fell out of favor.

5.27. Armstrong (1936) reawakened interest in FM when he realized it
had a much different property that was desirable. When the kf is large, the
inverse mapping from the modulated waveform xFM(t) back to the signal
m(t) is much less sensitive to additive noise in the received signal than is
the case for amplitude modulation. FM then came to be preferred to AM
because of its higher fidelity. [1, p 5-6]
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Finding the “bandwidth” of FM Signals turns out to be a difficult task.
Here we present a few approximation techniques.

5.28. First, from 5.21, we see that both FM and PM can be viewed as

x(t) = A cos (2πfct+ θ0 + φ(t)) (79)

where φ(t) = (m ∗ h)(t) if h(t) is selected properly.
The Fourier transform of φ(t) is Φ(f) = M(f)H(f). So, if M(f) is

band-limited to B, we know that Φ(f) is also band-limited to B as well.
Now, let us rewrite (79) as

x(t) = ARe
{
ej(2πfct+θ0+φ(t))

}
= ARe

{
ej(2πfct+θ0)ejφ(t)

}
(80)

Recall that Taylor series expansion of ez around z = 0 is

ez =
∞∑
k=0

zk

k!
= 1 + z +

z2

2!
+
z3

3!
+ · · · .

Plugging in z = jφ(t) gives

ejφ(t) = 1 + jφ(t) +
(jφ(t))2

2!
+

(jφ(t))3

3!
+ · · · = 1 + jφ(t)− φ2(t)

2!
+ (−j) φ

3(t)

3!
+ · · · (81)

Applying the Euler’s formula

ej(2πfct+θ0) = cos (2πfct+ θ0) + j sin (2πfct+ θ0)

and (81) to (80) gives

x (t) = A

(
cos (2πfct+ θ0)− φ(t) sin (2πfct+ θ0)−

φ2(t)

2!
cos (2πfct+ θ0) +

φ3(t)

3!
sin (2πfct+ θ0) + · · ·

)
.

Recall that if φ(t) is band-limited to B, then φn(t) is band-limited to nB. With such series, there

is no bound for the value of n and therefore, we conclude that the absolute bandwidth would be

infinite.

5.29. Narrowband Angle Modulation: When φ(t) is small, we may
approximate ez by z + 1. Therefore,

ejφ(t) ≈ 1 + jφ(t). (82)

Applying the Euler’s formula

ej(2πfct+θ0) = cos (2πfct+ θ0) + j sin (2πfct+ θ0)
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and (82) to (80) gives

x(t) = ARe
{
ej(2πfct+θ0)ejφ(t)

}
≈ ARe {(cos (2πfct+ θ0) + j sin (2πfct+ θ0)) (1 + jφ(t))}
= A cos (2πfct+ θ0)− Aφ(t) sin (2πfct+ θ0)

• The “approximated” expression of x(t) is similar to AM.

◦ The first term yields a carrier component. The second term gen-
erates a pair of sidebands. Thus, if φ(t) has a bandwidth B, the
bandwidth of x(t) is 2B.

• The important difference between AM and angle modulation is that
the sidebands are produced by multiplication of the message-bearing
signal, φ(t), with a carrier that is in phase quadrature with the carrier
component, whereas for AM they are not.

• The FM signal whose

∣∣∣∣2πkf t∫
−∞

m (τ)dτ

∣∣∣∣ � 1 is called narrowband

FM (NBFM). The PM signal whose |kpm(t)| � 1 is called narrow-
band PM (NBPM). Note that these conditions are satisfied when
kf � 1 or kp � 1, respectively. [6, p 260]

• For larger values of |φ(t)| the terms φ2(t), φ3(t), . . . in (81) cannot be ignored and will

increase the bandwidth of x(t).

• Recall, from (32) that

g(t) cos(2πfct+ φ)
F−−−⇀↽−−−
F−1

1

2

(
ejφG(f − fc) + e−jφG(f + fc)

)
.

Therefore, when

x (t) ≈ A cos (2πfct+ θ0)−Aφ (t) cos (2πfct+ θ0 − 90◦) ,
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we have

X (f) ≈ A

2

(
ejθ0δ(f − fc) + e−jθ0δ(f + fc)− ej(θ0−90

◦)Φ(f − fc)− e−j(θ0−90
◦)Φ(f + fc)

)
=
A

2

(
ejθ0δ(f − fc) + e−jθ0δ(f + fc) + jejθ0Φ(f − fc)− je−jθ0Φ(f + fc)

)
.

5.30. Wideband FM (WBFM): For potentially wideband m(t), here,
we present a technique to roughly estimate the bandwidth of xFM(t).

To do this, we consider m(t) that is a piecewise constant function (also
known as step function or staircase function); this implies that the instan-
taneous frequency f(t) = fc+kfm(t) of xFM(t) is also piecewise constant as
shown in Figure 42.

1

t

t

Figure 42: FM for
discrete-valued (digital)
message

For example, we can consider the transmitted signal xFM(t) constructed
from five different tones. Its instantaneous frequency is increased from f1

to f5.
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cos 2𝜋𝑓1𝑡 cos 2𝜋𝑓2𝑡 cos 2𝜋𝑓5𝑡cos 2𝜋𝑓4𝑡cos 2𝜋𝑓3𝑡

Rate = Rs frequency-changes per second

Each tone lasts 

1/Rs sec.  

Figure 43: xFM(t) for discrete-valued (digital) message in Figure 42.
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Assume that each tone lasts Ts = 1
Rs

[s] where Rs is called the “(symbol)
rate” of the data transmission. The value of Rs indicates how fast the values
of m(t) is changed. Increasing the value of Rs reduces the time to complete
the transmission.

Recall that the Fourier transform of a cosine contains simply (two shifted
and scaled) delta functions at the (plus and minus) frequency of the cosine.
However, recall also that when we consider the cosine pulse, which is time-
limited, its Fourier transform contains (two) sinc functions. In particular,
the cosine pulse

p (t) =

{
cos (2πf0t) , t1 ≤ t < t2,
0, otherwise,

can be viewed as the pure cosine function cos (2πf0t) multiplied by a rect-
angular pulse r (t) = 1 [t1 ≤ t < t2]. By (31), we know that multiplication
by cos (2πf0t) will shift the spectrum R(f) of the rectangular pulse to ±fc
and scaled its values by a factor of 1

2 : P (f) = 1
2R (f − f0) + 1

2R (f + f0)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1

-0.5

0

0.5

1

t [s]

x(
t)

-200 -150 -100 -50 0 50 100 150 200
0

0.01

0.02

0.03

0.04

0.05

f [Hz]

|X
(f)

|

Cos Pulse

1

cos 2 100 , 0.5 0.6,
0, otherwise.

Figure 44: Cosine pulse
and its spectrum which
contains two sinc func-
tions at ± freqeuncy of
the cosine (which is 100
Hz in the figure). When
the pulse only lasts for
a short time period, the
sinc pulses in the fre-
quency domain are wide.

where the Fourier transform24 R(f) of the rectangular pulse is given by

R (f) = (t2 − t1) e−jπf(t1+t2) sinc (πf (t2 − t1)) .
24To get this, first consider the rectangular pulse of width t2 − t1 centered at t = 0. From (15), the

corresponding Fourier transform is 2
(
t2−t1

2

)
sinc

(
2π
(
t2−t1

2

)
f
)
. Finally, by time-shifting the rectangular

pulse in the time domain by t2+t1
2 , we simply multiply the Fourier transform by e−2πf(

t2−t1
2 ) in the

frequency domain.
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See Figure 44 for an example.
When m(t) is piecewise constant, xFM(t) is a sum of cosine pulses. There-

fore, its spectrum X(f) will be the sum of the sinc functions centered at the
frequencies of the pulses as shown in Figure 45.

1

cos 2 cos 2 cos 2cos 2cos 2
300 Hz100 Hz 200 Hz 500 Hz400 Hz

0 0.05 0.1 0.15 0.2 0.25
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-1000 -800 -600 -400 -200 0 200 400 600 800 1000
0

0.01
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0.03

Frequency [Hz]

M
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Figure 45: A digital version of FM: xFM(t) and the corresponding XFM(f).

• X(f) extends to ±∞. It is not band-limited.

• One may approximate its bandwidth by assuming that “most” of the
energy in the sinc function is contained in its main lobe which is at
± 1
Ts

= ±Rs from its peak. Therefore, the bandwidth of xFM(t) becomes

BWFM ≈ Rs + (fmax − fmin) +Rs = (fmax − fmin) + 2Rs
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